Description
Lors d'un protocole de mise en accord de clé (comme Diffie-Hellman) basé sur un groupe générique G, les protagonistes aboutissent à un élément commun K_{AB} de G qui est indistinguable d'un autre élément de G mais pas d'une suite de bits aléatoire de même taille. Nous présenterons deux nouvelles méthodes pour extraire des bits de K_{AB} lorsque G est une courbe elliptique définie sur une extension quadratique d'un corps fini puis sur un corps premier. Le premier extracteur consiste à travailler avec une courbe définie sur une extension quadratique d'un corps fini à p éléments et de prendre le premier coefficient de l'abscisse du point. La démonstration consiste à obtenir des bornes explicites sur le nombre de points d'une courbe appartenant à la restriction de Weil de la courbe elliptique. L'autre extracteur fonctionne pour une courbe elliptique définie sur un corps premier en prenant une partie des bits de l'abscisse du point. Dans ce cas, la démonstration de la validité de cet extracteur est basée sur la borne de Polya-Vinogradov.
Prochains exposés
-
Dual attacks in code-based (and lattice-based) cryptography
Orateur : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-