Description
Dans une première partie, nous présentons le problème en donnant une définition de la complexité bilinéaire de la multilication dans les corps finis. Puis nous exposons les résultats classiques concernant cette complexité, notamment l'algorithme originel de multiplication par interpolation sur des courbes algébriques dû à D.V. et G.V. Chudnovski.<br/> Ensuite, nous présenterons en un premier temps nos résultats théoriques sur la complexité bilinéaire, à savoir des versions modifiées de l'algorithme de D.V. et G.V. Chudnovski appliquées à des tours de corps de fonctions algébriques ayant de bonnes propriétés. On montrera alors les bornes de la complexité qui s'en déduisent. On présentera enfin une application effective de ces résultats, à savoir la construction effective d'un algorithme bilinéaire quasi-optimal de multilication dans certains corps finis par interpolation sur une courbe hyperelliptique.
Prochains exposés
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-