Sommaire

  • Cet exposé a été présenté le 19 septembre 2003.

Description

  • Orateur

    Marc Joye - Gem+

Provable security becomes more and more popular in the cryptographic community. As exemplified by the NESSIE project, it is now common to see it as an attribute of a cryptosystem. Provable security is at the protocol level; a harder task may be to evaluate the security of a cryptosystem at the implementation level. Rather than considering a cryptosystem as a black-box, we may assume that some sensitive data can leak during the course of the execution of a (naively implemented) crypto-algorithm. A concrete example is given by the so-called side-channel analysis.<br/> Side-channel analysis is a powerful technique re-discovered by P. Kocher in 1996. The principle consists in monitoring some side-channel information like the running time, the power consumption, or the electromagnetic radiation. Next, from the monitored data, the attacker tries to deduce the inner-workings of the algorithm and thereby to retrieve some secret information. When there is a single measurement, the process is referred to as a simple side-channel analysis; and when there are several measurements handled together with statistical tools, the process is referred to as differential side-channel analysis.<br/> This talk is aimed at studying the resistance of elliptic curve cryptosystems against those two classes of attacks. In particular, we survey the various strategies proposed so far to prevent side-channel attacks.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés